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Abstract Lisdexamfetamine dimesylate (LDX) is a long-

acting d-amphetamine prodrug used to treat attention-def-

icit/hyperactivity disorder (ADHD) in children, adolescents

and adults. LDX is hydrolysed in the blood to yield d-

amphetamine, and the pharmacokinetic profile of d-

amphetamine following oral administration of LDX has a

lower maximum plasma concentration (Cmax), extended

time to Cmax (Tmax) and lower inter- and intra-individual

variability in exposure compared with the pharmacokinetic

profile of an equivalent dose of immediate-release (IR) d-

amphetamine. The therapeutic action of LDX extends to at

least 13 h post-dose in children and 14 h post-dose in

adults, longer than that reported for any other long-acting

formulation. Drug-liking scores for LDX are lower than for

an equivalent dose of IR d-amphetamine, which may result

from the reduced euphorigenic potential associated with its

pharmacokinetic profile. These pharmacokinetic and

pharmacodynamic characteristics of LDX may be

beneficial in the management of symptoms in children,

adolescents and adults with ADHD.

Key Points

Lisdexamfetamine dimesylate (LDX) is the first, and

so far the only, long-acting stimulant in which the

active drug is released biochemically in the blood

rather than mechanically in the gastrointestinal tract.

The duration of therapeutic action of LDX is longer

than that reported for any other long-acting stimulant

medication, and extends to at least 13 h post-dose in

children and 14 h post-dose in adults with ADHD.

The pharmacokinetic and pharmacodynamic

characteristics of LDX may be beneficial in the

management of symptoms in children, adolescents

and adults with ADHD.

1 Introduction

The stimulants amphetamine and methylphenidate (MPH)

are long-established and effective treatments for attention-

deficit/hyperactivity disorder (ADHD) in children, adoles-

cents and adults [1]. The therapeutic effects of immediate-

release (IR) formulations, however, wear off within 4–6 h,

necessitating repeated dosing to achieve symptom control

throughout the day [2–5]. To extend the efficacy of stim-

ulants throughout the day and into the evening following a

single morning dose, long-acting stimulants have been
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developed [6]. These rely on the gradual and phased

release of amphetamine or MPH in the gastrointestinal (GI)

tract and, for certain formulations, the duration of action

has been reported to extend for up to 12 h post-dose [7].

Lisdexamfetamine dimesylate (LDX) is the first stimu-

lant prodrug [8], and is approved for the treatment of

children, adolescents and adults with ADHD in the USA,

Canada, Brazil and Australia. In Europe, it is the only

available long-acting amphetamine and is approved in

selected countries for the treatment of children and ado-

lescents with a clinically inadequate response to MPH. In

Denmark, Sweden and the UK, it is also approved for the

treatment of adults with ADHD. LDX has also received

approval in the USA for the treatment of moderate to

severe binge eating disorder in adults [9].

Unlike other long-acting stimulants, the active drug is

not released in the GI tract following oral administration.

Instead, the pharmacologically inactive parent molecule,

consisting of d-amphetamine covalently linked to L-lysine

(Fig. 1), is rapidly and actively taken up from the small

intestine by carrier-mediated active transport [10], proba-

bly via the oligopeptide transporter peptide transporter 1

(PEPT1) [11]. Once in the blood, LDX is hydrolysed in

erythrocyte cytosol by an unknown aminopeptidase,

yielding pharmacologically active d-amphetamine (Fig. 2)

[11, 12]. The d-amphetamine generated from LDX crosses

the blood-brain barrier to access binding sites in the central

nervous system [13] and to exert therapeutic effects by

increasing noradrenergic and dopaminergic neurotrans-

mission. Here, we discuss the relevance of this distinctive

mode of action to clinicians and patients by reviewing the

pharmacokinetics and pharmacodynamics of d-am-

phetamine delivered by hydrolysis of LDX. Relevant

journal articles and clinical studies were identified by

searching PubMed and ClinicalTrials.gov for ‘lisdexam-

fetamine’ or ‘SPD489’.

2 Pharmacokinetics of d-Amphetamine Delivered
by Hydrolysis of Lisdexamfetamine Dimesylate
(LDX)

2.1 Plasma Concentration–Time Profiles for d-

Amphetamine Following Oral LDX

Administration

The pharmacokinetic parameters that describe blood

plasma concentration-time profiles and thereby quantify an

individual’s exposure to LDX or d-amphetamine are

defined in Table 1.

Figure 3, panels a and b, show the observed blood

plasma concentration-time profiles for intact LDX and d-

amphetamine following oral administration of LDX in

children with ADHD (N = 17) [14] and healthy adults

(N = 11) [15], respectively. Tables 2 and 3 summarise

published pharmacokinetic parameters for d-amphetamine

and LDX, respectively, following administration of LDX in

H2N
CH3

NH2

N
H

Lisdexamfetamine
Inactive prodrug

L-Lysine d-Amphetamine
Active drug

O
H2N CH3

NH2

H2N

O
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+

Fig. 1 Chemical structure of LDX and immediate metabolites. In the

inactive prodrug LDX, a peptide bond links the amino group of d-

amphetamine to the carboxyl group of L-lysine. Enzymatic hydrolysis

of this bond releases active d-amphetamine, and also yields L-lysine

as a byproduct. LDX lisdexamfetamine dimesylate

L-Lysine

+

d-Amphetamine
Active drug

Stomach

Small
intestine

Lumen of 
small intestine

LDX
Inactive
prodrug

LDX

Erythrocyte Blood

Rate-limiting hydrolysis
by unknown erythrocyte peptidase

Active transport
probably via PEPT1

Fig. 2 Systemic delivery of d-

amphetamine by hydrolysis of

LDX in the blood. LDX

lisdexamfetamine dimesylate,

PEPT1 peptide transporter 1
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the therapeutic range (30, 50 or 70 mg/day) to children

with ADHD, healthy adults and healthy older adults. The

mean time to maximum plasma concentration (Tmax) is

longer for d-amphetamine (3.0–4.7 h) than for LDX

(1.0–2.1 h), because of the rate-limited hydrolysis of the

parent drug. After peaking, plasma LDX concentrations

declined rapidly (mean elimination half-life [t�],

0.4–0.9 h), whereas d-amphetamine was cleared more

slowly (mean t�, 8.6–15.0 h). Exposure to d-amphetamine

(maximum plasma concentration [Cmax] and area under the

plasma concentration-time curve from zero to infinity

[AUC0–?]) were linearly proportional to LDX dose in

children with ADHD within the therapeutic dose range

(Table 2; Fig. 3a) [14] and in healthy adults at therapeutic

and supratherapeutic doses (N = 20) [16].

2.2 Comparison of d-Amphetamine

Pharmacokinetics Following Oral LDX

or Immediate-Release d-Amphetamine

Data directly comparing d-amphetamine pharmacokinetic

profiles following oral administration of LDX or an IR d-

amphetamine formulation are limited to a single-blind

study involving a supratherapeutic dose of LDX in three

cohorts of adults with histories of stimulant abuse

(N = 12). The mean plasma d-amphetamine Tmax in each

cohort occurred 1 h later following administration of LDX

100 mg (range 3.78–4.25 h) than for an equivalent dose of

d-amphetamine sulfate (40 mg; 1.88–2.74 h) [17], sug-

gesting that the systemic delivery of d-amphetamine from

LDX is dependent upon the rate-limiting conversion of the

parent molecule.

2.3 Consistency of Exposure to d-Amphetamine

Following LDX Administration

Reliable symptom control by LDX is dependent on pre-

dictable and consistent exposure to d-amphetamine.

Table 2 shows that d-amphetamine exposure was generally

consistent across studies for a given LDX dose and age

group, but that some age-related variability in d-am-

phetamine exposure was apparent. In children with ADHD,

both d-amphetamine Cmax and AUC0–? for given doses of

LDX were higher than in healthy adults, presumably

reflecting differences in body size. Also, in healthy adults

aged 55–74 years and 75 years and older, d-amphetamine

exposure was higher and t� longer than in younger adults.

This observation may be explained by a decrease in d-

amphetamine clearance with age due to reduced renal

function [18].

Within-study variability in d-amphetamine exposure

may be expressed as the percentage coefficient of variation

(% CV = [parameter standard deviation/parameter

mean] 9 100) for Cmax, AUC0–t and AUC0–?. Percent

CVs below 30 are considered to represent low variability

[19]. Table 2 shows that % CVs for d-amphetamine

exposure following doses of LDX were generally low (in

the range 12.1–35.7), irrespective of age. In a single-dose

study in healthy adults, both intra- and inter-individual %

CVs for d-amphetamine exposure (log Cmax and log

AUC0–?) were low following administration of a wide

range of doses of LDX (50–250 mg); all but the 50 mg

dose were supratherapeutic [16]. These data indicate that

d–amphetamine is delivered consistently and predictably

following LDX administration. In contrast, within-study

inter-individual % CVs for intact LDX exposure were

nearly always higher than the equivalent values for d-am-

phetamine (Table 3).

2.4 Gastrointestinal Factors Influencing d-

Amphetamine Pharmacokinetics Following

LDX Administration

Factors that influence a drug’s rate of transit through, and

uptake from, the GI tract include the presence of food and

pH [20–22]. In a single-dose crossover study, Krishnan and

Zhang [23] reported that d-amphetamine Tmax was delayed

by approximately 1 h in healthy adults (N = 18) admin-

istered LDX 70 mg following a high-fat meal compared

with those who fasted; there were no significant differences

in Cmax, AUC0–? or t� (Table 2; high-fat meal defined in

legend). In contrast, while Tmax for intact LDX also

exhibited a significant delay of approximately 1 h, Cmax

was significantly lower and t� significantly longer in the

fed than in the fasted state, although AUC0–? was unaf-

fected (N = 8) (Table 3) [24]. Following orally adminis-

tered extended-release mixed amphetamine salts (MAS

XR), however, the mean Tmax of plasma d-amphetamine

was reported as approximately 2.5 h longer in fed than in

fasted individuals, with Cmax and AUC0–? modestly lower

[21, 22]. These results suggest that LDX hydrolysis, rather

than GI transit and uptake, is the dominant factor in

Table 1 Interpreting

pharmacokinetic parameters
Cmax Maximum plasma concentration: provides a measure of peak drug exposure

AUC0–t Area under the plasma concentration–time curve from time zero to another specified time (t):

provides a measure of overall drug exposure

Tmax Time to Cmax: relevant to speed of onset

t� Elimination half-life: relevant to duration of efficacy

LDX: Prodrug Delivery, Amphetamine Exposure and Duration of Efficacy 343
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Fig. 3 Pharmacokinetic profiles of plasma LDX and d-amphetamine

a after a single oral dose of LDX in children with ADHD (N = 17)

[14] (Reproduced from ‘Pharmacokinetics of lisdexamfetamine

dimesylate and its active metabolite, d-amphetamine, with increasing

oral doses of lisdexamfetamine dimesylate in children with attention-

deficit/hyperactivity disorder: a single-dose, randomized, open-label,

crossover study’, Boellner SW et al. Clinical Therapeutics

2010;32:252–64. �2010 Excerpta Medica Inc. Reproduced with

permission from Elsevier), b on day 7 of daily oral LDX dosing in

healthy adults (N = 11) [15] (Krishnan SM and Stark JG, Current

Medical Research and Opinion 2008;24:33–40, copyright �2008

Informa Healthcare. Adapted with permission of Informa Healthcare),

and c timings of symptomatological (SKAMP, CPRS-R) or functional

(PERMP) assessments in studies of the efficacy of LDX throughout

the day [8, 24, 57, 59, 60, 62]. Asterisk Effect sizes for LDX versus

placebo in these studies are presented in Fig. 4. Biederman et al. [24]

used a post-dose time point as baseline. ADHD attention-deficit/

hyperactivity disorder, CPRS-R Connors’ Parent Rating Scale-Re-

vised, LDX lisdexamfetamine dimesylate, PERMP Permanent Product

Measure of Performance, SKAMP Swanson, Kotkin, Agler, M-Flynn,

and Pelham
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determining the d-amphetamine exposure profile following

oral administration of LDX.

GI disorders, including ulcers and dyspepsia, are com-

monly treated using proton pump inhibitors, such as

omeprazole, to suppress acid secretion by the stomach

mucosa and thereby increase the pH. The inhibition of

gastric acid secretion may, however, interfere with the

absorption of drugs for which pH is an important deter-

minant of bioavailability [25], such as MAS XR which uses

pH-sensitive beaded technology to achieve phased release.

Haffey et al. [26] reported that the median Tmax for total

amphetamine was approximately 2 h shorter in healthy

adults when MAS XR was co-administered with omepra-

zole (Tmax, 2.75 h) than when administered alone (Tmax, 5

h) (N = 24). In the same study, d-amphetamine pharma-

cokinetic parameters remained largely unaltered when

LDX was co-administered with oral omeprazole (Table 2).

Thus, these results indicate that, unlike MAS XR, LDX

provided an amphetamine exposure profile that was unaf-

fected by administration of a proton pump inhibitor.

LDX is soluble in water [9] and can, therefore, be

administered as a solution or mixed into food to individuals

who experience difficulty in swallowing capsules, or in

circumstances when the monitoring of drug consumption is

a requirement. This differs from other long-acting stimu-

lant formulations which rely on mechanical phased release

of the active drug from a capsule. In another study

(NCT01890785), similar values of d-amphetamine Cmax

and AUC0–96h were seen when oral LDX 70 mg was

administered to healthy adults as capsules, or capsule

contents were dissolved in orange juice or mixed into

vanilla yogurt [27]; in addition administration with yogurt

delayed Tmax by only 0.4 h compared with the fasted state

[9].

To summarise, the above LDX single-dose studies

suggest that the hydrolysis of LDX to d-amphetamine in

the blood is the rate-limiting step, rather than the uptake of

the parent drug from the GI tract. This leads to consistent

intra- and inter-individual d-amphetamine exposure

profiles.

2.5 Multiple Once-Daily Dosing of LDX

In a study of multiple once-daily dosing of LDX 70 mg in

healthy adults, Krishnan and Stark [15] observed that

steady-state plasma d-amphetamine concentrations were

achieved by day five [15, 28]. At steady state, pre-dose

plasma d-amphetamine concentrations were approximately

20 ng/mL, and Cmax following each daily dose was

approximately 90 ng/mL (Fig. 3b), moderately higher than

following a single 70 mg dose in adults (Table 2) [15]. The

values for d-amphetamine Tmax, t� and AUC0–? were

similar following a single dose of LDX, regardless ofT
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whether steady state had previously been reached

(Table 2). These results suggest that d-amphetamine

exposure reaches therapeutic levels after a single dose of

LDX and that systemic concentrations of d-amphetamine

do not markedly increase with multiple once-daily dosing.

2.6 Effect of Route of Administration of LDX

or Immediate-Release d-Amphetamine

on Plasma d-Amphetamine Pharmacokinetics

The abuse of stimulants often involves intranasal or intra-

venous administration to shorten stimulant blood plasma

Tmax and increase Cmax, thereby enhancing the euphori-

genic potential [29–31]. The pharmacokinetics of intra-

venous LDX compared with intravenous d-amphetamine

were evaluated in a single-dose, crossover study in adults

with a history of stimulant abuse (N = 9). Mean (SD) d-

amphetamine Tmax was shorter and Cmax higher following

intravenous IR d-amphetamine (20 mg; Tmax, 0.8 h [1.3];

Cmax, 105 ng/mL [91.4]) than after an equivalent dose of

intravenous LDX (50 mg; Tmax, 2.5 h [1.5]; Cmax, 38.9 ng/

mL [8.1]) [32]. This more gradual approach to a lower peak

plasma d-amphetamine concentration for LDX compared

with IR d-amphetamine presumably resulted from rate-

limited hydrolysis of the prodrug in the blood. The impact

of the route of administration was further explored in a

single-dose, crossover study in healthy adults, which found

no difference in d-amphetamine pharmacokinetics follow-

ing oral and intranasal administration of LDX 50 mg

(N = 18) (Table 4) [33].

2.7 Impact of Compromised Erythrocytes

and Haematocrit Level on the Generation of d-

Amphetamine from LDX

The effects on LDX metabolism of moderately compro-

mised erythrocytes and low haematocrit have been inves-

tigated in vitro. The rate of LDX hydrolysis was similar in

blood from donors with or without sickle cell disease [34].

Furthermore, the rate of LDX hydrolysis was haematocrit-

dependent, but substantial d-amphetamine production was

still observed at 10 % of normal haematocrit [11]. These

results suggest that LDX biotransformation is unaffected

by clinically relevant variations in erythrocyte viability and

levels [11, 34].

2.8 Potential for Drug–Drug Interactions

In vitro evidence indicates that LDX itself does not interact

with the major cytochrome P450 (CYP) isoforms com-

monly inhibited or induced by therapeutic drugs (CYP1A2,

2A6, 2B6, 2C9, 2C19, 2D6, 3A4/5 [35] and 2C8 [36]), and

does not inhibit or act as a substrate for humanT
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P-glycoprotein [36]. Other in vitro studies suggest that

amphetamine weakly inhibits CYP2D6 [37] and 2A6 [38],

and that its metabolites weakly inhibit CYP2D6, 1A2 and

3A4 [39].

In an in vivo study designed to investigate whether LDX

affects the activity of CYP isoforms, the following drugs

were administered to healthy individuals in the form of a

Cooperstown cocktail with or without LDX: caffeine (a

CYP1A2 substrate), dextromethorphan (a CYP2D6 sub-

strate), midazolam (a CYP3A substrate) and omezaprole

(the proton pump inhibitor described in the ‘gastrointesti-

nal factors’ section and a CYP2C19 substrate). The phar-

macokinetic profiles of d-amphetamine and LDX were

similar to those observed in other studies (Tables 2, 3).

Furthermore, LDX had no effect on the activity of

CYP1A2, 2D6 or 3A as determined by the Cmax and AUC0–

? of their respective substrates. For omeprazole a small

decrease in Cmax was observed, possibly indicating that

LDX may have an effect either on CYP2C19 activity or on

omeprazole absorption [40].

In vivo, co-administration of LDX with extended-re-

lease guanfacine, an a2-adrenoreceptor agonist that is

approved in the USA [41] and Canada [42] for treatment of

ADHD in combination with psychostimulants (and is a

CYP3A4 substrate), led to no clinically meaningful dif-

ference in d-amphetamine or guanfacine pharmacokinetic

profiles [43]. When LDX was co-administered with ven-

lafaxine, a serotonin-noradrenaline reuptake inhibitor that

is predominantly metabolised by CYP2D6 [44], there was

no change in d-amphetamine pharmacokinetics. Although a

small decrease in exposure to O-desmethylvenlafaxine (the

active metabolite of venlafaxine) was observed, total

exposure to venlafaxine plus O-desmethylvenlafaxine was

unaffected [28].

3 Pharmacodynamics of d-Amphetamine
Delivered by Hydrolysis of LDX

3.1 Efficacy Throughout the Day Following

an Early-Morning Dose of LDX

The pharmacokinetics of d-amphetamine delivered by

hydrolysis of LDX are reflected in the duration of the

therapeutic action following an early-morning dose of

LDX. Although the shorter d-amphetamine Tmax for IR

amphetamine compared with LDX leads to more rapid

initial symptom control, the therapeutic effects of IR

amphetamine and IR MAS do not extend beyond 4–6 h in

children with ADHD [2–5, 45] or hyperkinetic disorder

[46, 47]. This necessitates multiple daily doses of IR

amphetamine or IR MAS to extend symptom control into

the afternoon and evening [2].

Extended-release formulations have been developed to

provide prolonged drug delivery [3, 48–55]. To date, LDX

is the only prodrug ADHD medication, the only long-act-

ing stimulant that does not rely on mechanical phased

release, and the only stimulant for which efficacy in

treating the symptoms of ADHD has been demonstrated

beyond 12 h post-dose [56]. The duration of action of LDX

following an early-morning dose has been evaluated in a

series of model environment studies and phase III clinical

trials conducted in children, adolescents and adults with
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Fig. 4 Analyses of the effect sizes of LDX versus placebo in

a children with ADHD in an analogue classroom study (post-hoc)

[58] and b adults with ADHD in a model workplace study [61] (Effect

size of lisdexamfetamine dimesylate in adults with attention-deficit/

hyperactivity disorder, Wigal T et al. Postgraduate Medicine 2011

123:169–76, Informa Healthcare. Reprinted by permission of the

publisher Informa healthcare http://informahealthcare.com/) LDX

demonstrated significant improvement versus placebo, by effect size,

at all post-dose time points in both studies. For PERMP, positive

effect sizes indicate superiority over placebo; for SKAMP, negative

effect sizes indicate superiority over placebo. ADHD attention-deficit/

hyperactivity disorder, LS least-squares, SE standard error, SEM

standard error of the mean, SKAMP Swanson, Kotkin, Agler,

M-Flynn, and Pelham, PERMP Permanent Product Measure of

Performance
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ADHD. Figure 3 illustrates how the timings of efficacy

assessments in these studies (Fig. 3c) relate to the phar-

macokinetic profiles of intact LDX and d-amphetamine

following a single dose of LDX 30, 50 and 70 mg (Fig. 3a)

or after the last of seven daily doses of LDX 70 mg

(Fig. 3b).

Two randomised, double-blind, placebo-controlled,

crossover analogue classroom studies in children (aged

6–12 years) with ADHD have studied changes in scores on

the Swanson, Kotkin, Agler, M-Flynn, and Pelham

(SKAMP) and Permanent Product Measure of Performance

(PERMP) scales. In the first study (N = 117), dose-opti-

mised LDX led to marked, sustained and statistically sig-

nificant (p\ .005) improvements in the SKAMP

Deportment and Attention subscale scores and PERMP

scale scores from 1.5 h to at least 13 h post-dose (last

assessment) compared with placebo [57]. Post hoc analyses

showed that effect sizes in favour of LDX over placebo

remained large from 2.5 h until at least 13 h post-dose

(range 0.84–1.11) for SKAMP total and PERMP Attemp-

ted and Correct scores (Fig. 4a) [58]. In the second class-

room study (N = 52), significant (p\ .001) improvements

compared with placebo in SKAMP Deportment and

Attention subscale scores and PERMP Attempted and

Correct scores were maintained for 12 h (last assessment)

after an optimised dose of LDX [24]. Additionally, a

summer camp study in children with ADHD (N = 25)

investigated the relative effectiveness of dose-optimised

LDX, intensive behavioural intervention and a combination

of both treatments. Compared with intensive behavioural

intervention alone, the overall magnitude of changes in

SKAMP scores were large for both LDX alone (effect size,

1.16) and combined treatment (effect size, 1.14), and the

benefits were maintained until the last assessment (12.5 h

post-dose) [59].

The duration of action of LDX in adults with ADHD

was evaluated in a randomised, double-blind, placebo-

controlled, crossover study in a simulated workplace

environment (N = 127). Compared with placebo, both

absolute (p B .0017) and change from baseline (p\ .001)

PERMP total scores were significantly improved at all

post-dose assessments from 2 to 14 h [60]. Medium-to-

large least-squares mean model-based effect sizes for

PERMP Attention and Correct scores were maintained for

up to 14 h after LDX administration (Fig. 4b) [61].

Two randomised, double-blind, phase III clinical trials

have used the Conners’ Parent Rating Scale-Revised

(CPRS-R) to assess the duration of therapeutic response in

children and adolescents (6–17 years) with ADHD.

Although the range of post-dose assessment time points

was not as extensive as in the model environment studies

and the outcomes relied on parent/caregiver reports rather

than direct observations, these phase III clinical trials

enrolled large patient numbers and provide robust data. At

endpoint in a 7-week, dose-optimised, European trial in

children and adolescents with ADHD (N = 336), differ-

ences between LDX and placebo in least-squares mean

change from baseline in CPRS-R total score were statisti-

cally significant (p\ .001) at 10 am, 2 pm and 6 pm fol-

lowing an early-morning dose (approximately 7 am), with

effect sizes maintained in the range 1.30–1.42 [62]. Simi-

larly, in a 4-week, fixed-dose, US trial in children

(6–12 years) with ADHD (N = 290), the reductions in

CPRS-R scores were significantly greater for LDX 30, 50

and 70 mg than for placebo at all three assessment times

(p\ .001) [8].

3.2 Safety

The safety profile of LDX, including treatment-emergent

adverse events (TEAEs), vital sign changes and laboratory

signs is consistent with the known safety profile of stim-

ulants used in the treatment of ADHD, and has been

recently reviewed [63]. Here we further review in greater

detail two safety concerns associated with stimulants that

are particularly pertinent to the pharmacokinetic and

pharmacodynamic characteristics of LDX: effects on sleep

and the potential for abuse, misuse and diversion as

determined by drug-liking scores.

3.2.1 Effect of LDX on Sleep

Sleep-related TEAEs are a consistent finding in clinical

trials of stimulant medications in individuals of all ages

with ADHD [64, 65]. With the duration of efficacy of LDX

extending at least into the evening, the effect on sleep-

related TEAEs is of clinical interest, although the propor-

tion of patients who experience TEAEs during a clinical

study does not provide information about the time of onset

or the duration of the TEAE. The incidence of insomnia as

a TEAE in short-term, randomised, double-blind, parallel-

group, phase III clinical trials of LDX ranges from 11.2 to

18.8 % in children and/or adolescents [8, 66–68], and from

12.7 to 19.3 % in adults [69, 70], compared with rates of

4.8 % or below in individuals receiving placebo. In longer-

term safety and efficacy extension studies of at least

6 months’ duration, the incidence of insomnia as a TEAE

in individuals with ADHD who were receiving LDX was

similar to that in the short-term trials: 17.3 % in children

[71], 12.1 % in adolescents [72], 14.1 % in children and

adolescents [73], and 19.5 % in adults [74].

The relationships between stimulant treatment, the

incidence of sleep-related TEAEs, and sleep disturbance

are not, however, straightforward because ADHD itself is

associated with disturbance of sleep [75–77], which may be

exacerbated in the evening if the efficacy of medication
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wanes [64, 65, 78]. In a short-term, phase III trial in adults

with ADHD, despite sleep-related TEAEs being reported

by a higher proportion of individuals receiving LDX (109/

358, 30.4 %) than by those taking placebo (9/62, 14.5 %),

there was no difference at endpoint in the mean global

Pittsburgh Sleep Quality Instrument (PSQI) score, a sub-

jective assessment of sleep quality, among those reporting

sleep-related TEAEs. Indeed, significant improvements

were observed in the LDX group compared with the pla-

cebo group in one of the PSQI components (daytime

functioning, p = .0001), leading the authors to caution

against relying on self-reported TEAEs alone as an indi-

cation of the effect of stimulant medications on sleep [79].

In a post hoc analysis of this study, a greater proportion of

individuals in the LDX group (20.9 %) than in the placebo

group (8.2 %) demonstrated better sleep at endpoint than at

baseline, and the relationship between treatment group and

endpoint PSQI score was statistically significant (p = .03)

[80]. Furthermore, the relationship between clinically

meaningful improvements in the symptoms of ADHD

(defined as Clinical Global Impressions-Improvement

[CGI-I] scores of 1 or 2) and improved sleep (i.e. decreased

PSQI scores) was statistically significant (p = .0008) [80].

In a laboratory sleep study [81], children (6–12 years) with

ADHD (N = 24) were randomised (2:1) to receive an

optimal dose of LDX (30, 50 or 70 mg based on thera-

peutic response during a 3-week open-label dose-optimi-

sation period) or placebo. This study found no difference

between individuals treated with LDX and those who

received placebo in the polysomnographic assessments of

latency to persistent sleep, wake time after sleep onset or

total sleep time, but the number of awakenings after sleep

was significantly decreased in those receiving LDX com-

pared with participants who received placebo (p\ .0001)

[81].

3.2.2 Drug-Liking Scores for LDX Compared

with Immediate-Release Amphetamine

Drug-liking scores for LDX and IR d-amphetamine have

been compared following oral and intravenous adminis-

tration. On the primary measure of abuse liability in a

double-blind, randomised, placebo-controlled, crossover

study in individuals with a history of stimulant abuse

(N = 36), the maximum change of the Drug Rating

Questionnaire-Subject (DRQS) Liking scale score was not

significantly different from placebo for oral LDX 50 and

100 mg, but was significant (p\ .001) at the suprathera-

peutic dose of 150 mg. In addition, participants signifi-

cantly favoured oral IR d-amphetamine 40 mg over an

equivalent oral dose of LDX (100 mg, p\ .05) but not

LDX 150 mg. Furthermore, mean peak DRQS Liking scale

scores for LDX were observed approximately 3 h (LDX 50

and 100 mg) or 4 h (LDX 150 mg) post-dose compared

with 1.5–2 h post-dose for d-amphetamine 40 mg [82].

In a second double-blind, randomised, placebo-con-

trolled, crossover study conducted in individuals with a

history of intravenous drug abuse (N = 9), maximum mean

change in DRQS Liking scale scores for intravenous d-

amphetamine 20 mg (5.6 [standard error, 1.3]) was sig-

nificantly (p = .01) different from placebo (0.0 [1.3]),

whereas scores for an equivalent intravenous dose of LDX

50 mg (2.1 [1.3]) did not differ from those for placebo

(p = .290) [32].

A post hoc analysis of these two drug-liking studies

revealed that the subjective effects of LDX were not sta-

tistically significantly different when the drug was admin-

istered orally versus intravenously, in keeping with the

broadly similar d-amphetamine pharmacokinetic profiles

generated by LDX following oral and intravenous admin-

istration. In contrast, the subjective effects of IR amphe-

tamine are both larger and more rapid in onset when

administered intravenously than when administered orally

[30]. These results, presumably reflecting the delayed Tmax

and lower Cmax of the d-amphetamine pharmacokinetic

profile, suggest that LDX may have a lower abuse potential

than IR d-amphetamine.

Real-world data from a retrospective, observational case

series of single-substance exposures to LDX (7,113 cases),

dextroamphetamine/amphetamine IR (10,195 cases) or

dextroamphetamine/amphetamine XR (6245 cases) is

suggestive of a lower potential for abuse/misuse of LDX

[83]. The study reports the odds of abuse/misuse was 2.3

(95 % confidence interval [CI] 2.0–2.4) times higher for

dextroamphetamine/amphetamine IR than that for LDX

and dextroamphetamine/amphetamine XR combined. The

odds of abuse/misuse of dextroamphetamine/amphetamine

XR was 1.9 (95 % CI 1.7–2.2) times higher than

lisdexamfetamine.

3.3 Why Might the Daily Duration of Efficacy

of LDX Exceed that of Immediate-Release

Amphetamine?

Regardless of whether d-amphetamine is delivered via

oral LDX or an IR formulation, the plasma d-am-

phetamine t� is approximately 10 h, and the AUC0–? is

roughly similar for equivalent doses [2, 21, 26, 39, 84].

This raises the question of why the daily therapeutic

duration of action of LDX is at least threefold that of IR

amphetamine. The explanation may lie in the fact that the

rate of increase in plasma d-amphetamine concentration is

less steep (i.e. Tmax is longer) and Cmax is lower following

oral administration of LDX compared with IR ampheta-

mine [85], which suggests that acute tolerance (tachy-

phylaxis) could be a factor.
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Acute tolerance may be defined as a reduction in

response to a drug over the course of a single exposure. In

other words, for a given drug plasma concentration, ther-

apeutic effects (and side effects) are greater when the drug

plasma concentration is rising than when it subsequently

declines. In terms of ADHD medication, acute tolerance to

MPH has been observed, and understanding this phe-

nomenon has led to improvements in long-acting formu-

lations to treat ADHD [48–51, 54, 55]. Specifically,

Swanson et al. [48] reported that a second bolus of MPH

was less effective when given in the declining phase of

plasma MPH concentration than in the ascending phase

following an initial dose. This finding led to the discovery

that a long-acting formulation delivering an ascending

(rather than flat) profile of plasma MPH concentration was

as effective in providing relief of ADHD symptoms

through the day as three equally spaced doses of IR MPH

per day [53].

Acute tolerance to the subjective effects of oral d-am-

phetamine 20 mg has been observed in healthy adults [29],

and the potential for LDX and IR d-amphetamine to cause

acute tolerance has been investigated in rats by measuring

plasma d-amphetamine concentrations, striatal extracellu-

lar concentrations of the neurochemical mediator dopamine

and locomotor activity (as a behavioural outcome). The

overall d-amphetamine exposure was similar for equivalent

doses of both drugs, but delivery of the active drug via rate-

limited hydrolysis resulted in a lower d-amphetamine Cmax

and delayed Tmax for LDX than for IR d-amphetamine.

Compared with IR d-amphetamine, the pharmacokinetic

profile of plasma d-amphetamine produced by LDX led to

behavioural activation that was less pronounced as extra-

cellular striatal dopamine concentrations increased, but was

maintained for longer as extracellular striatal dopamine

concentrations decreased [86]. One potential explanation

for these observations may be lower acute tolerance to d-

amphetamine when generated from the prodrug than for IR

d-amphetamine which, in turn, may be responsible for the

extended daily duration of therapeutic action and reduced

drug-liking effects of LDX compared with IR ampheta-

mine formulations.

4 Conclusions

The hydrolysis of LDX produces a plasma d-amphetamine

pharmacokinetic profile with lower Cmax, extended Tmax

and lower inter- and intra-individual variability than that

produced by an equivalent dose of IR d-amphetamine. The

therapeutic duration of action of LDX is considerably

longer than that of an equivalent dose of IR d-am-

phetamine, possibly because reduced acute tolerance

means that behavioural effects of LDX are maintained into

the declining phase of the plasma d-amphetamine con-

centration-time curve. The safety profile of LDX is typical

of the stimulant class of ADHD medications. The reduced

drug-liking profile of LDX compared with IR d-am-

phetamine formulations at equivalent doses may reflect the

lower plasma d-amphetamine Cmax and delayed Tmax of the

prodrug that therefore reduce the euphorigenic potential.

These pharmacokinetic and pharmacodynamic character-

istics of LDX may be beneficial in the management of

symptoms in patients with ADHD.
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